Chapter 12 Managing & Measuring Economic Exposure

© RS 2024 - for private use only, not to be posted/shared online)

- Last Class
- Three types of FX Exposure
 - (1) Transaction exposure (TE): Short-term
 - (2) Economic exposure (EE): Long-term
 - (3) Translation exposure: Book values vs Market values. (Not covered)
- Managing TE Tools:
 - Forwards/Futures
 - MMH
 - Option Hedge

Q: Best Tool? Need to consider S_{t+T} distribution (scenarios).

• Economic exposure (EE)

Risk associated with a change in the NPV of a firm's expected cash flows, due to (*unexpected*) changes in S_t ($e_{f,t}$).

• This Class

- Measuring EE:
 - Accounting data (EAT, EBT, Operating Income, EPS changes)
 - CF elasticity = $\frac{\% \text{ change in EBT}}{e_{f,t}}$
 - Financial/economic data (returns)
 - Regression
- Managing EE
 - Main Tool: Operational Hedging (Matching Inflows and Outflows)
- Review Project

Economic Exposure

Economic exposure (**EE**): Risk associated with a change in the NPV of a firm's expected cash flows, due to an *unexpected* change in S_t .

Note: S_t is very difficult to forecast. Actual change in S_t can be considered "unexpected."

- General definition. It can be applied to any firm (domestic, MNC, exporting, importing, purely domestic, etc.).
- The degree of EE **depends on**:
 - Type & structure of the firm: Importing, exporting, or purely domestic.
 - Industry structure in which the firm operates: Monopolistic, oligopolistic, competitive.

- In general:
- Importing & exporting firms face higher EE than purely domestic firms
- **Monopolistic** firms face lower EE than firms that operate in competitive markets.

Example: A U.S. firm face almost no competition in domestic market. Then, it can transfer to prices almost any increase of its costs due to changes in S_t . Thus, this firm faces no/low EE. ¶

- The degree of EE for a firm is an empirical question.
- Economic exposure is difficult to measure.
- We can use *accounting data* (EAT changes) or *financial/economic data* (returns) to measure EE. Economists like economic-based measures.

Measuring Economic Exposure

A Measure Based on Accounting Data

We use cash flows to estimate FX exposure. For example, we simulate a firm's **CFs** (EBT, Operating Income, etc.) **under several FX scenarios**.

Example: IBM HK provides the following info:

Sales and cost of goods are dependent on S_t

C	L = 7 HKD/USD	$S_{\star} = 7.70 \text{ HKD}$	(TICT)
	. — / ПКИ/ USI	$34 - 1.70 \square ND$	\mathbf{U}

Sales (in HKD)	300M	400M
Cost of goods (in HKD)	<u>150M</u>	<u>200M</u>
Gross profits (in HKD)	150M	200M
Interest expense (in HKD)	<u>20M</u>	<u>20M</u>
EBT (in HKD)	130M	180M

Example (continuation):

A 10% depreciation of the HKD increases HKD CFs from **HKD** 130M (=USD 18.57M) to **HKD** 180M (=USD 23.38M): A 25.92% change in CFs measured in USD.

Q: Is EE significant?

A: We can calculate the elasticity of CF to changes in S_t :

CF elasticity =
$$\frac{\% \text{ change in EBT}}{e_{f,t}} = \frac{.2592}{.10} = 2.59$$

<u>Interpretation</u>: We say, a 1% depreciation of the HKD produces a change of **2.59%** in EBT. Quite significant. But the change in exposure is **USD 4.81M**. This amount may not be significant for IBM (*Judgment call* needed.)

IBM HK behaves like a net exporter: Weaker DC, Higher CFs. ¶

Note: Firms will simulate many scenarios & produce an expected value.

We can use historical accounting CFs to calculate economic exposure.

Example: Kellogg's cash flow elasticity in **2020-2019**.

From 2019 to 2020 (end-of-year to end-of-year), K's operating income ("adjusted operating profit") increased 2.6%. The USD depreciated against basket of major currencies (Nominal Broad USD Index) by 2.98%. Then,

CF elasticity =
$$\frac{\% \text{ change in OI}}{e_{f,t}} = \frac{.026}{.0298} = 0.8724$$

<u>Interpretation</u>: We say, a 1% depreciation of the USD produces a positive change of **0.87**% in operating income. K's behaves like a **net exporter**.

Update: 2022-2021.

From 2022 to 2021, K's operating profit increased 3.9%. The USD appreciated against basket of major currencies by 5.30%. Then,

CF elasticity =
$$\frac{.039}{-.0530}$$
 = -0.7358. (Results reversed!) ¶

A Regression based Measure and a Test

CF elasticity gives us a measure, but it is not a test of EE. A judgment call is needed.

It is easy to **test** regression coefficients (t-tests or F-tests).

- Simple steps:
- (1) Get data: $CF_t \& S_t$ (available from the firm's past)
- (2) Estimate regression:

$$\Delta CF_t = \alpha + \beta \Delta S_t + \varepsilon_t,$$

- $\Rightarrow \beta$: Sensitivity of ΔCF_t to ΔS_t .
- \Rightarrow The higher β , the greater the impact of ΔS_t on CF_t .
- (3) Test for EE \Rightarrow H₀ (no EE): $\beta = 0$

$$H_1$$
 (EE): $\beta \neq 0$

(4) Evaluation of this regression: t-statistic of \mathbf{G} and \mathbf{R}^2 .

<u>Rule</u>: $|t_{\beta} = \beta / SE(\beta)| > 1.96$ $\Rightarrow \beta$ is significant at the 5% level.

A Regression based Measure and a Test

In general, regressions are done in terms of % changes:

$$cf_t = \alpha + \beta \, \mathbf{e_{f,t}} + \xi_t,$$

 cf_t : % change in CF from t-1 to t.

Interpretation of β : A 1% change in S_t changes the CF_t by β %.

• Expected Signs

We estimate the regression from a Domestic (say, U.S.) firm's point of view: CF measured in DC (say, USD & S_t is USD/FC). Then, from the regression, we can derive the Expected sign (β):

Type of company	Expected sign for β	
U.S. Importer	Negative	
U.S. Exporter	Positive	
Purely Domestic	Depends on industry	

• Other variables also affect CFs: Investments, acquisitions, growth of the economy, etc.

We "control" for the other variables that affect CFs with a multivariate regression, say with k other variables:

$$cf_t = \alpha + \beta \, \mathbf{e}_{f,t} + \delta_1 \, X_{1,t} + \delta_2 \, X_{2,t} + \dots + \delta_k \, X_{k,t} + \varepsilon_t,$$

where $X_{k,t}$ represent one of the k^{th} other variables that affects CFs.

Note: Sometimes the impact of ΔS_t is not felt immediately.

⇒ contracts and short-run costs matter.

Example: For an exporting U.S. company a sudden appreciation of the USD increases CF in the short term. Solution: use a modified regression:

$$cf_t = \alpha + \beta_0 \mathbf{e}_{f,t} + \beta_1 \mathbf{e}_{f,t-1} + \beta_2 \mathbf{e}_{f,t-2} + \ldots + \beta_q \mathbf{e}_{f,t-q} + \delta_1 X_{1,t} + \ldots + \varepsilon_t.$$

Sum of \mathbf{B} 's: Total sensitivity of cf_t to $e_{f,t}$ (= $\beta_0 + \beta_1 + \beta_2 + \beta_3 + ...$)

A Measure Based on Financial Data

Accounting data can be manipulated. Moreover, international comparisons are difficult. Instead, use financial data: Stock prices!

We can easily measure how returns and ΔS_t move together: *correlation*.

Example: Kellogg's and IBM's EE.

Using monthly stock returns for Kellogg's $(r_{K,t})$ and monthly changes in S_t (USD/EUR) from 33 years (1988:Jan – 2022:Jan), we estimate $\rho_{K,s}$ (correlation between $r_{K,t} \& e_{f,t}$) = 0.150. It looks small.

We do the same exercise for IBM, measuring the correlation between $r_{IBM,t}$ & $e_{f,t}$, obtaining $\rho_{IBM,s}$ = 0.089, small and, likely, close to zero.

But, if we use USD/TWC, based on the major currencies, things change a bit: $\rho_{K,s} = 0.1263$ (similar to USD/EUR) & $\rho_{IBM,s} = 0.1795$ (different). \P

An Easy Measure of EE Based on Financial Data

• Better measure: A regression-based measure that can be used as a test.

Steps:

1) Regress, r_t , returns against (unexpected) ΔS_t .

$$r_t = \alpha + \beta e_{f,t} + \varepsilon_t$$

2) Check statistical significance of regression coefficient for s;

$$H_0$$
 (No EE): $\beta = 0$.

$$H_1$$
 (EE): $\beta \neq 0$.

 \Rightarrow A simple t-test can be used to test H₀.

(<u>Rule</u>: $|t_{\beta}| > 1.96 \Rightarrow$ Reject H₀ at 5% level –i.e., β significantly $\neq 0!$)

Interpretation: A 1% change in S_t changes the Value of the firm by β %.

Example: Kellogg's EE.

Using 1988-2022 data (see previous example), we run the regression:

$$r_{K,t} = \alpha + \beta e_{f,t}(USD/TWC) + \varepsilon_t$$

 $R^2 = 0.01596$

Standard Error = 5.56447

Observations = 409

	Coefficients	Standard Error	t-stat	P-value
Intercept (α)	0.38592	0.27515	1.4026	0.1615
$e_{f,t}$ (β)	0.43775	0.17041	2.5688	0.0106

Analysis: Reject H₀, $|t_{\beta} = 2.57| > 1.96$ (significantly $\neq 0$) \Rightarrow EE! $\beta > 0$, K behaves likes an exporter.

Interpretation of β : A 1% increase in exchange rates, increases K's returns by 0.44%.

Note: \mathbb{R}^2 is very low! \P

Example: IBM's EE.

Now, using the IBM data (1988-2022), we run the regression:

$$r_{IBM,t} = \alpha + \beta e_{f,t}(USD/TWC) + \varepsilon_t$$

 $R^2 = 0.03221$

Standard Error = 7.4465

Observations = 409

 Coefficients
 Standard Error
 t-stat
 P-value

 Intercept (α)
 0.38896
 0.36821
 1.0563
 0.2914

 $e_{f,t}$ (β)
 0.83941
 0.22805
 3.6809
 0.0003

Analysis: Reject H_0 , $|t_{\beta} = 3.68| > 1.96$ (β significantly $\neq 0$) \Rightarrow EE! $\beta > 0$, IBM behaves likes an exporter.

Interpretation of β : A 1% increase in exchange rates, increases IBM's returns by **0.84%**.

Again, the R^2 is low! ¶

- Returns are not only influenced $e_{f,t}$. In investments, it is common to use the 3 factors from the Fama-French model:
- Market $(r_M r_f)$
- SMB (size)
- HML (value).

In Kellogg's case:

$$r_{K,t} = \alpha + \gamma_1 (r_M - r_f)_t + \gamma_2 SMB_t + \gamma_3 HML_t + \varepsilon_t$$

A momentum can be added to accommodate Carhart's (1997) model.

Note: In general, we find $\gamma_1 \& \gamma_3$ significant. \mathbb{R}^2 is not very high.

• Now, we test if Kellogg's faces EE, *conditioning* on the other drivers of K's returns. That is, we do a t-test on β on the following regression:

$$r_{K,t} = \alpha + \gamma_1 (r_M - r_f)_t + \gamma_2 SMB_t + \gamma_3 HML_t + \beta e_{f,t} + \varepsilon_t$$

Example (continuation): Kellogg's EE (with 3 FF factors):

	Coefficients	Std Error	t-stat
Intercept	0.0798	0.2691	0.2967
Market $(r_M - r_f)_t$	0.3893	0.0647	6.0204
Size (SMB)	-0.1144	0.0898	-1.2738
B-M (HML)	0.1546	0.0851	1.8157
$e_{f,t}(\beta)$	0.2601	0.1664	1.5633

 $R^2 = 0.0995$ (a higher value driven mainly by the market factor).

Now, t-stat = 1.56 (*p-value* = .119). We say:

"After controlling for other factors that affect Kellogg's excess returns, we do not find evidence of EE at the 5% significance level."

 \Rightarrow <u>Usual interpretation</u>: No EE for K.

We also see a lower sensitivity, β : 0.2601. ¶

Example (continuation): IBM's EE (with 3 FF factors):

	Coefficients	Std Error	t-stat
Intercept	-0.2894	0.3180	-0.9102
$e_{f,t}(\beta)$	0.3963	0.1966	2.0157
Market $(r_M - r_f)_t$	0.9506	0.0764	12.4363
Size (SMB)	-0.2557	0.1062	-2.4085
B-M (HML)	-0.1154	0.1006	-1.1471

 $R^2 = 0.3092$.

The t-stat = 2.01 (*p-value* = .045).

 \Rightarrow <u>Usual interpretation</u>: IBM faces EE.

Again, we see a big reduction in lower sensitivity, β : 0.3963. ¶

EE: Evidence

The above regression (for K) has been done for firms around the world.

Results from work by Ivanova (2014):

- Mean $\beta = 0.57$ (a 1% USD depreciation increases returns by 0.57%).
- But, only 40% of the EE are statistically significant at the 5% level.
- For large firms (MNCs), EE is small –average $\beta = 0.063$ & not significant at the 5% level.
- 52% of the EEs come from U.S. firms that have <u>no international</u> transactions (a higher S_t "protects" these domestic firms).

Summary:

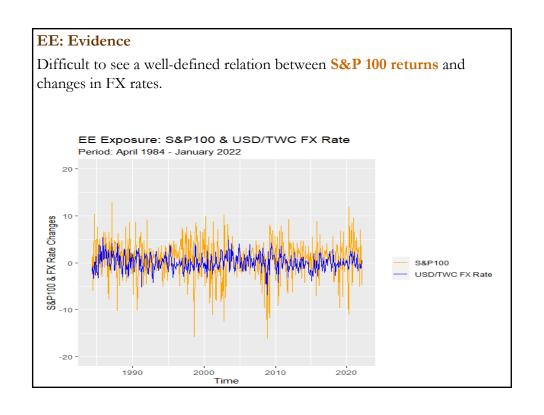
- On average, large companies (MNCs, Fortune 500) face no EE.
- EE is a problem of small and medium, undiversified firms.

EE: Evidence

• Check Ivanova's results for big firms, using the **S&P 100**.

We regress SP100 returns from past 38 years (1984:Apr – 2022:Jan) against $e_{f,t}$ (USD/TWC) & the 3 FF factors:

 $R^2 = 0.9664$


Standard Error = 0.8136

Observations = 454

	Coefficients	Std Error	t-stat	P-value
Intercept	-0.0247	0.0389	-0.6357	0.5253
$e_{f,t}$	-0.0225	0.0231	-0.9756	0.3298
Market $(r_M - r_f)_t$	0.9988	0.0090	110.5233	>.00001
SMB	-0.2459	0.0133	-18.4659	>.00001
HML	0.0068	0.0126	0.5381	0.5907

Since $|t_{\beta} = -0.98| < 1.96$ \Rightarrow No evidence of EE for big U.S. firms.

EE: Evidence Data mining may find periods of a positive and negative relation between both S&P100 & USD/TWC FX Rate series. Overall, not clear. Note: S&P100 is adjusted (divided by 10). EE Exposure: S&P100 & USD/TWC FX Rate Period: April 1984 - January 2022 200 S&P100 & FX Rate Level 150 S&P100 100 USD/TWC FX Rate 2000 Time 1990 2010 2020

Managing Economic Exposure

Definition: EE measures how changes in FX rates affect CFs.

<u>Understanding EE</u>: Cash flows from subsidiary (a price taker)

Revenue: **Price in FC** * Quantity * S_t = PQ

Cost: Variable (α PQ) + Fixed Cost (0< α < 1, with $\alpha = \alpha_{FC} + \alpha_{DC}$)

Gross profits: $(1 - \alpha)$ PQ – Fixed Cost

 $EBT = [(1 - \alpha) PQ - Fixed Cost] - IE$ (IE: Interest Expense)

 $EAT = [(1 - \alpha) PQ - Fixed Cost - IE] * (1 - t)$ (t: tax rate)

Costs & IE have two components: a FC & a DC.

- For example: Variable Cost (VC): α_{FC} & α_{DC}

Interest Expense (IE): \mathbf{IE}_{FC} & \mathbf{IE}_{DC} .

- Q: How can a company reduce EE?
- A company can play with α_{FC} : The better the match, between Revenue and Costs in FC, the smaller the EE.
- A company can play with **IE**_{FC}.

Matching Inflows and Outflows

To get a manageable EE, firms tend to play with α_{FC} .

When a firm restructures operations (say, by shifting expenses to FC, by increasing α_{FC}) to reduce EE, we say a firm is doing *operational hedging*.

General rules:

- If $S_t \uparrow$ (DC depreciates) & CF \uparrow (typical, **net exporter**), operational hedges tend to shift expenses abroad ($\alpha_{FC} \& IE_{FC} \uparrow$) & revenues home.
- If $S_t \downarrow$ (DC appreciates) & CF \uparrow (typical, **net importer**), operational hedges tend to shift expenses home ($\alpha_{FC} \& IE_{FC} \downarrow$) & revenues abroad.

Case Study: Laker Airways (Skytrain) (1977-1982)

After a long legal battle in the U.S. and the U.K, Sir Freddie Laker was able to fly his **low cost airline** from LON to NYC (1977). Big success.

Situation: Rapid expansion. Laker buys planes from MD financed in USD.

• Cost

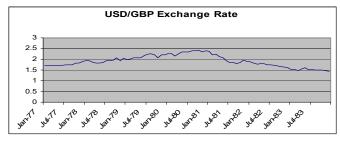
- (i) **fuel**, typically paid for **in USD**
- (ii) **operating costs** incurred **in GBP**, but with a small USD cost component (advertising and booking in the U.S.)
- (iii) financing costs from the purchase of aircraft, denominated in USD.

• Revenue

Sale of airfares (probably, evenly divided between GBP and USD), plus other GBP revenue.

Currency mismatch (gap):

Revenues


mainly GBP, USD

Payables

mainly USD, GBP

 \Rightarrow Laker behaves like a **net importer**.

• What happened to S_t ?

1977-1981: Big USD **depreciation** (currency gap increases Laker's CFs).

1981-1982: Big USD appreciation (currency gap reduces Laker's CFs).

1982: Laker Airlines bankrupt.

Q: Can we solve Laker Airways problem (economic exposure)?

- Solutions to Laker Airways problem (EE):
 - Increase sales in US
 - Transfer cost out to GBP/Shift expenses to GBP ($\alpha_{DC} \uparrow / \alpha_{FC} \downarrow$)
 - Increase IE in GBP ($IE_{DC} \uparrow / IE_{FC} \downarrow -i.e.$, borrow more in the UK)
 - Diversification
- Firms with a *currency gap*: Big swings in S_t can seriously affect CFs.
- Very simple approach to managing EE: Minimize currency gaps.
 - ⇒ Match inflows in FC & outflows in FC, as much as possible.
- European & Japanese car makers have been matching inflows and outflows by moving production to the U.S.

But, not all companies can avoid currency gaps: Importing and Exporting companies will always be operationally exposed.

Q: Why Operational Hedging?

- Financial hedging –with FX derivative instruments– is **inexpensive**, but it is short-term, liquid only for **short-term maturities**.
- Operational hedging is more **expensive** (increasing α_{FC} by building a plant, expansion of offices, etc.), but a **long-term instrument**.

<u>A different view</u>: Financial hedging only covers FX risk (S_t through P), but not the risk associated with sales in the foreign country (\mathbf{Q} -risk).

Example: The foreign country enters into a recession, Q goes down, but S_t remains stable. An operational hedge works better to cover Q-risk.

Thus, financial hedging **does not work** very well if the **correlation** between price in FC (\mathbf{P}) & quantity sold (\mathbf{Q}) is low.

But, if Corr(P,Q) is high, financial hedging will be OK.

```
Example: A U.S. firm exports to Europe. Two different FX scenarios:
```

(1) $S_t = 1.00 \text{ USD/EUR}$

Sales in US USD 10M

in EU EUR 15M

Cost of goods in US USD 5M

in EU EUR 8M

(2) $S_t = 1.10 \ USD/EUR$

Sales in US USD 11M

in EU EUR 20M

Cost of goods in US USD 5.5M

in EU EUR 10M

Taxes: US 30%

EU 40%

Interest: US USD 4M

EU EUR 1M

Example (continuation):

CFs under the Different Scenarios (in USD)

 $S_t = 1 \text{ USD/EUR}$ $S_t = 1.1 \text{ USD/EUR}$ (10% higher)

Sales 10M+15M = 25M 11M+22M = 33M

CGS $\underline{5M+8M} = 13M$ $\underline{5.5M+11M} = 16.5M$

Gross profit 5M+7M = 12M 5.5M+11M = 16.5M

Interest $\underline{4M+1M} = \underline{5M}$ $\underline{4M+1.1M} = \underline{5.1M}$

EBT 7M 11.4M

Tax 0.3M+2.4M = 2.7M 0.45M+3.96M = 4.41M

EAT **4.3M 6.99M**

CF Elasticity =
$$\frac{(6.99 - 4.3)/4.3}{.10}$$
 = 6.255 (\$\approx\$ 6.3%)

<u>Interpretation</u>: A 1% depreciation of the USD, increases EAT by 6.3% (probably, very significant EE!).

 \Rightarrow US firm benefits by S_t (USD/EUR) \uparrow –like a **net exporter!** \P

Example (continuation):

Q: How can the US exporting firm avoid economic exposure? (match!)

- Increase US sales
- Borrow more in Euros (increase outflows in EUR)
- Increase purchases of inputs from Europe (increase CGS in EUR)
- (A) US firm increases US sales by 25% (unrealistic!)

EAT
$$(S_t = 1 \text{ USD/EUR}) = \text{USD } 6.05\text{M}$$

EAT
$$(S_t = 1.1 \text{ USD/EUR}) = \text{USD } 8.915\text{M}$$

 \Rightarrow a 10% depreciation of the USD, EAT increases by only 47%.

(B) US firm borrows only in EUR: EUR 5M

EAT
$$(S_t = 1 \text{ USD/EUR}) = \text{USD } 4.7\text{M}$$

EAT
$$(S_t = 1.1 \text{ USD/EUR}) = \text{USD } 7.15\text{M}$$

 \Rightarrow a 10% depreciation of the USD, EAT increases by 52%.

Example (continuation):

(C) US firm increases EU purchases by 30% (US purchases ↓ by 30%)

EAT
$$(S_t = 1 \text{ USD/EUR}) = \text{USD } 3.91\text{M}$$

EAT
$$(S_t = 1.1 \text{ USD/EUR}) = \text{USD } 6.165\text{M}$$

 \Rightarrow a 10% depreciation of the USD, EAT increases by 58%.

(D) US firm does (A), (B) and (C) together

EAT
$$(S_t = 1 \text{ USD/EUR}) = \text{USD } 6.06\text{M}$$

EAT (
$$S_t = 1.1 \text{ USD/EUR}$$
) = USD 8.25M

 \Rightarrow a 10% depreciation of the USD, EAT increases by 36%.

<u>Note</u>: For some firms, operational hedging is limited! For these companies, Financial hedging!

• International Diversification

Not all firms can do matching. They still have a very good FX risk management tool: *International diversification* (a portfolio approach.)

True international diversification:

- Location of production
- Sales
- Input sources
- Borrowing of funds, etc.
- In general, the variability of CF is reduced by diversification:

 ΔS_t is likely to increase the firm's competitiveness in some markets while reducing it in others.

 \Rightarrow EE should be low.

• Not surprisingly, big MNCs do not have EE.

• Some Firms are Always Exposed

Not all firms can do matching and/or international diversification. Many domestic firms are exposed to FX risk.

Example: Small restaurants ("sodas") in Arenal, Costa Rica.

If the USD appreciates against the CRC (=CR colón), Arenal's sodas see revenues increase, due to higher U.S. tourism.

But, the costs (labor, local food, utilities, etc.) are all in CRC, not much affected by the USD.

⇒ An implicit currency gap!

These sodas, which are completely domestic firms, have significant exposure to FX risk. They behave like **net exporters**. ¶

In many of these cases, very difficult to minimize FX exposure.

• Case Study: Walt Disney Co.

We want to know if Disney faces EE.

Four divisions (in **2006**): Media Networks Entertainment; Theme Parks and Resorts; Studios; & Consumer Products.

Total Inflows (2006). Revenue USD 34.3B, Operating income: **USD** 6.49B, EPS: USD 2.06:

Media (ABC, ESPN, Lifetime, A&E, etc. Low). Rev: 14.75B, OI: 3.61B

Amusement Parks (Cruise Line & 10 parks: Euro Disney, Tokyo Disney + HK park, etc. *Medium*). Rev: 9.95B, OI: 1.53B

Studios (Disney, Pixar, Touchstone, etc. High). Rev: 7.2B, OI: 0.73B

Consumer products (Licensing, Publishing, Disney store (Europe).

Medium) Rev: USD 2.4B, OI: 0.62B

Outflows (2006) – around 80% in USD

 $S_{Sep\ 06} = 81.9778 \text{ TWC/USD}$ (TWC = Trade-weighted currency index)

 $Price_{Sep \ 06} = USD \ 30.50$

• Case Study: Walt Disney Co.

Compute CF-elasticity (2006-2013): OI up to USD 10.72B.

- DIS introduced a new division: **Interactive Media** (Kaboosee.com, BabyZone.com, **Playdom** (USD 563.2M, social gaming), etc.)
- DIS ordered **two new cruises** with 50% more capacity each in 2011.
- Shangai theme park (opened in 2016).

	2006 (in USD)		2013 (in USD)	
	Revenue	Operating Income	Revenue	Operating Income
Media	14.75B	3.61B	20.35B	6.82B
Theme Parks	9.95B	1.53B	14.09B	2.22B
Studios	7.2B	0.73B	5.98B	0.66B
Consumer Products	2.4B	0.62B	3.56B	1.11B
Interactive Media	-	-	1.06B	-0.09B
Total	34.3B	6.49B	45.04B	10.72B

• Case Study: Walt Disney Co.

With the two data points (2006 & 2013) we calculate the CF-elasticity:

(1) Using accounting data (OI to measure CFs):

13-06 Change in OI =
$$USD 10.72B - USD 6.49 = USD 4.23B (65.18\%)$$

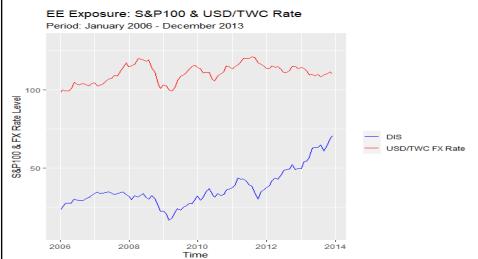
13-06
$$e_{f,t}$$
 = 81.9778/75.1918 – 1 = .09025 (or 9.03% depreciation of

USD, as direct quote)

$$\Rightarrow \text{CF-elasticity} = \frac{\% \text{ change in OI}}{\frac{e_{f,t}}{}} = \frac{.6518}{.09025} = 7.2222$$

(2) Using financial data (stock returns to measure ΔCFs):

13-06 DIS Stock Return =
$$r_{DIS,t}$$
 = 64.49/30.50 – 1 = 111.44%


$$\Rightarrow \frac{r_{DIS,t}}{e_{f,t}} = \frac{1.1144}{.09025} = 12.35$$
 (very big!)

<u>Conclusion</u>: CF-elasticities point out to a significant EE for DIS (DIS behaves as a net exporter.

• Case Study: Walt Disney Co.

- (3) Visual check: Stock price (blue) & USD/TWC (red).
 - ⇒ Not very clear relation, though we see a depreciating USD and a surging DIS price.

- Case Study: Walt Disney Co.
- According to elasticities, DIS behaves like a net exporter:
 S_t (USD/TWC) ↑ ⇒ CFs ↑.

- Managing Disney's EE
 - 1. Increase expenses in FC
 - Make movies elsewhere
 - Move production abroad
 - Borrow abroad
 - 2. Diversify revenue stream
 - Build more parks abroad (planning an expansion in Tokyo)
 - Add more cruises (3 more ordered in 2016 & 2017)
 - New businesses (Disney+ in 2020)

- Case Study: Walt Disney Co.
- Q: Are the CF-elasticities informative? Is S_t the only variable changing from 2006 to 2013?

A: No! DIS added assets, thus more revenue and OI is expected. We need to be careful with these numbers.

- We need to "control" for variables that also affect DIS stock returns, to isolate the effect of $e_{f,t}$. Otherwise, these numbers may be misleading.
- Using the 3 Fama-French factors, Market, SMB & HML, we run:

$$r_{DIS,t} = \alpha + \gamma_1 (r_M - r_f)_t + \gamma_2 SMB_t + \gamma_3 HML_t + \beta e_{f,t} + \varepsilon_t$$

Recall that we test EE by testing H_0 (No EE): $\beta = 0$. H_1 (EE): $\beta \neq 0$.

We use the t-test. We reject H_0 at 5% level when $|t_{\beta}| > 1.96$.

• Case Study: Walt Disney Co.

Now, we run the EE regression, with the 3 Fama-French factors, with 49 years (1973:Feb – 2022:Jan):

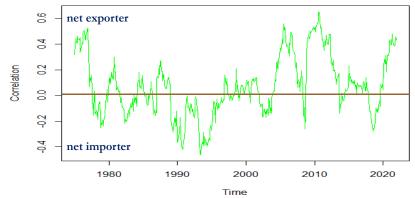
$$r_{DIS,t} = \alpha + \gamma_1 (r_M - r_f)_t + \gamma_2 SMB_t + \gamma_3 HML_t + \beta e_{f,t} + \varepsilon_t$$

 $R^2 = 0.4294$

Standard Error = 6.5698

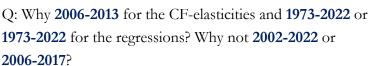
Observations = 588

	Coefficients	Std Error	t Stat	P-value
Intercept	-0.0924	0.2757	-0.3351	0.7377
$e_{f,t}$	-0.0532	0.1655	-0.3213	0.7481
$(r_M - r_f)$	1.2614	0.0637	19.8037	0.0000
SMB	-0.0008	0.0928	-0.0090	0.9928
HML	0.1635	0.0910	1.7972	0.0728


After controlling for other factors that affect Disney's excess returns, we cannot reject H_0 , since $|t_\beta = -0.32| < 1.96$ (at 5% level). Again, **no EE**.

• Case Study: Walt Disney Co.

More structure is easier to spot, using 24-month rolling correlations between $e_{f,t} \& r_{DIS,t}$. From 1975 – 2022: we see periods of DIS as a net exporter & DIS as a net importer.



Note: Average correlation: **0.0943**. (On average, a **net exporter**).

- Case Study: Walt Disney Co. Robustness
- Robustness of findings & Data mining.

In stats, more data is better. But, we use data that we believe is **representative** of the present and, more important, **what we expect in the future**; after all, we are hedging future CFs!.

But, be very aware of the potential for **data mining**. Result may be dependent on a specific sub-period, specific measures of CFs or a specific model for returns.

• Case Study: Walt Disney Co. - Robustness

Example: We use data up **2006-2017** to compute EE. The elasticities change sign: OI and stock price kept increasing (with accumulated changes of **127.74%** & **223.18%**,

respectively), but the USD appreciated (accumulated 6.96%).

$$\Rightarrow$$
 2006 – 2017 elasticities:

$$-\frac{\Delta OI_{DIS,t}}{e_{f,t}} = \frac{1.2774}{-.0696} = -18.35$$

$$-\frac{r_{DIS,t}}{e_{f,t}} = \frac{2.2318}{-.0696} = -32.07$$

<u>Interpretation</u>: a 1% appreciation of the USD, OI increases by **18.35**%. Now, DIS behaves like a **net importer**.

<u>Remark</u>: More data (only 4 more years!) changed substantially conclusions. This should be a **warning**: something is **not robust** in the results.

• But, not only S_t changed in this period: It is better to use a regression!

• Case Study: Walt Disney Co. - Robustness Visual **2006 – 2017** evidence: 2006 - 2013: DIS is a net exporter. 2006 - 2017: DIS is a net importer. ⇒ Careful with sub-period analysis! EE: DIS & FX (2006-2022) 200 180 —DIS —FX Rate 160 140 120 100 80 60 40 20 5/1/2009 1/1/2010 5/1/2010 5/1/2011 1/1/2012 5/1/2013 1/1/2014 5/1/2015 1/1/2016 9/1/2018 9/1/2018 1/1/2018 5/1/2018 9/1/2018 1/1/2020 5/1/2020 9/1/2020 9/1/2020

• Case Study: Walt Disney Co. - Robustness

Q: Can regression results be also subject to data mining? Yes! Suppose, we think Disney is a different company from 1973! We use only the last **20 years** (2002:Jan – 2022:Jan):

 $R^2 = 0.5264$ Observations = 241

		Std		
	Coefficients	Error	t Stat	P-value
Intercept	-0.0593	0.3169	-0.1873	0.8516
$e_{f,t}$	0.1667	0.1992	0.8368	0.4036
r_M - r_f	1.1141	0.0791	14.0778	0.0000
SMB	0.0339	0.1329	0.2547	0.7992
HML	0.1423	0.1126	1.2639	0.2075

Now, β is positive (but still not significant). But, **data mining** may work. For example, from 1997-2017, $|t_{\beta} = -1.74| < 1.645$ (at 10% level, **EE**) or 1987-2007, $|t_{\beta} = -2.28| < 1.96$ (at 5% level, **EE**).

• Do U.S. Firms Hedge?

From a survey of the largest 250 U.S. MNCs, taken in (2001):

- (1) Most of the MNCs in the survey understood translation, transactions, and economic exposure completely or substantially.
- (2) A large percentage (32% 44%) hedged themselves substantially or partially. However, a larger percentage did not cover themselves at all against transactions and economic exposure.

- (3) A significant percentage of the firms' hedging decisions depended on future FX fluctuations.
- (4) Over 25% of firms indicated that they used the forward hedge.
- (5) The majority of the firms surveyed have a better understanding of transactions and translation exposure than of economic exposure.

Canadian Evidence

The Bank of Canada conducts an annual survey of FX hedging. The main findings from the 2011 survey are:

- Companies hedge approximately 50% of their FX risk.
- Usually, hedging is for maturities of six months or less.
- Use of FX options is relatively low, mainly because of accounting rules and restrictions imposed by treasury mandate, rules or policies.
- Growing tendency for banks to pass down the cost of credit (credit valuation adjustment) to their clients.
- Exporters were reluctant to hedge because they were anticipating that the CAD would depreciate. On the other hand, importers increased both their hedging ratio and duration.

PROJECT – PPP & FX Forecasting

We test & forecast S_t using a regression model based on relative PPP.

Model:
$$e_{f,t} = \alpha + \beta (I_d - I_f)_t + \varepsilon_t$$

Data: CPI & S_t from 1974:Dec to 2024:April (for Mexico, 1993:Nov – 2024:April.). Transform data to get $e_{f,t}$ & $(I_d - I_f)_t$.

I - Testing PART (use whole sample).

- (A) Visual test, with graphs
 - Plot $e_{f,t}$ against $(I_d I_f)_t$. Do you see a 45 degree line?
 - Plot R_t over time. Is R_t constant? Are deviations from mean persistent?
- (B) H₀ (Relative PPP true): $\alpha = 0$ and $\beta = 1$ H₁ (Relative PPP not true): $\alpha \neq 0$ and/or $\beta \neq 1$

Formal test: t-test and F-test. Use 5% level.

II - Forecasting PART (use estimation & validation sample)

(1) Estimate the model using data up to **2020:December**. (1975:Jan-2020:Dec is the estimation period). Get estimated coefficients ($\hat{\alpha} \& \hat{\beta}$).

You want to forecast S_{t+1}^F from 2021:Jan - 2024:April (validation period). Steps:

- **1.** Assume $E_t[I_{d,t+1} I_{f,t+1}] = I_{d,t} I_{f,t}$
- 2. Using $\hat{\alpha}$ & $\hat{\beta}$, generate one-step-ahead (one-month ahead) forecasts for $e_{f,t+1}^F$. The first one-step-ahead forecast (done only with 2020:Dec info):

$$e_{2021:Jan}^{F} = \widehat{\alpha} + \widehat{\beta} (I_{d,2020:Dec} - I_{f,2020:Dec})$$

$$\Rightarrow S_{2021:Jan}^{F} = S_{t} * (1 + e_{2021:Jan}^{F})$$

3. Compute the forecast error:

$$\varepsilon_{2021:Jan} = S_{2021:Jan} - S_{2021:Jan}^F$$

4. Repeat **2** & **3**. Get Q=40 one-month-ahead forecasts $(S_{2021:Jan}^F, S_{2021:Feb}^F, ..., S_{2024:April}^F)$ & 40 forecast errors: Compute *out-of-sample* MSE.

II - Forecasting PART (use whole sample)

- **4.** Repeat **2** & **3**. Get Q=40 one-month-ahead forecasts ($S_{2021:Jan}^F$, $S_{2021:Feb}^F$, ..., $S_{2024:April}^F$) & 40 forecast errors: Compute *out-of-sample* MSE. $MSE = \frac{\sum_{t=1}^{Q} \varepsilon_{t+T}^2}{Q}$
- (2) Forecast S_{t+1}^F from **2021:Jan 2024:April** using RWM. Compute out-of-sample MSE
- Q: In terms of MSE, which model is better? Briefly discuss success/failure of model.

Check: https://www.bauer.uh.edu/rsusmel/4386/ppp-project_24.htm